Si construimos una circunferencia de centro A y un punto exterior C desde el que trazamos las tangentes y a continuación hacemos una recta tangente a la circunferencia en un punto dado B, si unimos el punto de tangencia con el punto exterior C tenemos una recta CB que se llama ceviana.
Si construimos la circunferencia de centro D inscrita a las tres tangentes tenemos que la ceviana corta a esta circunferencia en el punto H diametralmente opuesto al punto de tangencia F. Esto es debido a que las dos circunferencia son homotéticas y la homotecia conserva los ángulos. Si tomamos el punto medio I de los dos puntos de tangencia FB y trazamos una recta paralela a la ceviana tenemos que esta recta DI pasa por el centro D de la circunferencia inscrita a las tres tangentes.
Teorema de la ceviana |